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Introduction 
Moore’s law, an observational reflection, noted in a 1965 publication by Intel co-founder Gordon 
Moore, predicted an exponential growth in technological development that came to shape the 
silicon chip industry for decades to come. That rate of development, arguably, has slowed in 
recent years. However, the sheer magnitude of technological advancement, including remote 
sensing sensors and geospatial platforms and techniques, has shaped the direction of how people 
and pixels are linked for understanding human-environment interactions. Specifically, since the 
seminal work, People and Pixels: Linking Remote Sensing and Social Science (NRC, 1998), one 
of the most progressive research agendas in “socializing the pixel” has been to literally take 
population data and grid the counts into a spatially-explicit human denominator.  
 
Along with increasingly fine-grained and accessible remote sensing data and techniques for 
analyzing the environmental dimension, there has been a research community pushing the 
bounds for how to best quantify and grid human populations and their demographic information 
from local to global scales. Gridded population information provides a consistent, comparable 
areal unit to represent the human denominator that has appropriate spatial representation relative 
to the other sets of information in analysis. Gridded population data provides a base spatial 
denominator to identify specific populations at risk, quantify burdens, and inform our 
understanding of human-environment systems, both from a theoretical and applied perspective. 
 
Gridded population data led to key advancements, especially in public health. While 20 years 
ago, remote sensing was mostly used to map health risks, and more particularly the spatial 
distribution of vector-borne diseases through the mapping of vector habitats, it is now commonly 
used to also integrate the human factor. The spatial distribution of populations, their 
demographic and socio-economic characteristics, and their connectivity all have a considerable 
impact on disease dynamics. Gridded population data are also particularly useful for measuring 
progress towards international health and development goals, to plan vaccination needs and 
estimate infectious disease burden.    
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Advances in modeling human population and the role of remote sensing data 
 
Traditional approaches to grid population rely on national censuses which can provide a 
comprehensive and relatively unbiased source of information at a single time point, and when 
linked with accurate boundary data, provide a spatially detailed evidence base on population. 
The techniques and underlying methods that produce gridded population modeling evolved from 
early efforts of simply areal weighting census counts tied to GIS-defined administrative units. 
The areal weighting approach equally distributes the total count tied to a unit across all grid cells 
within the boundary of that administrative area (Doxsey-Whitfield et al., 2015). Slightly more 
evolved is a pycnophylatic approach which weights the redistribution of census count to smooth 
out edges between census units (Tobler, 1979). With increasing availability of spatially explicit 
data, including the advancements in remote sensing and its techniques, the dasymetric mapping 
approach, which relies on ancillary data to disaggregate census counts at a coarser resolution to a 
finer scale (Eicher and Brewer, 2001, Balk et al., 2006), became very common. Starting with 
data like satellite-derived, urban/rural redistribution of populations (Balk et al., 2006), most 
modern techniques use a variety of data, mainly derived via remote sensing (Stevens et al 2015). 
 
Thus, disaggregating census data through integration with higher spatial resolution ‘covariate’ 
datasets in modelling frameworks can then disaggregate these boundary-linked counts to 
consistent gridded representations (Fig.1, Stevens et al 2015, Balk et al 2006, Azar et al 2010, 
Bhaduri et al 2007, Sorichetta et al 2015). Different gridded products currently exist to the end-
user, all based on different underlying techniques (Stevens et al., 2015, Balk et al., 2006, 
Dobson, 2000). But, with increasing reliance on these products as the human denominator from 
which a multitude of other research and policy initiatives rely, making not only the accuracy of 

the population data important 
but also a need to understand 
how that population data was 
created and appropriate 
applications for use. 
 
Methods to grid population 
data continue to evolve in 
parallel with remote sensing 
developments. While early 
population estimation work 
relied on hand-drawn land 
cover classifications and 
were guided by “controlled 

guesswork” (Wright, 1936), most modern techniques use very spatially detailed settlement layers 
now available at the global level (Esch et al 2013, Pesaresi et al 2013). The increasingly finer 
grain of built and settlement areas specifically makes a binary dasymetric approach appealing 
and competitive in terms of assessment compared to more complex statistical approaches. 
 
What’s interesting about a more straightforward binary dasymetric approach (versus a statistical 
model) is the variety of ways one might apply the dasymetric constraint to redistributing counts. 
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Binary dasymetric techniques rely on one ancillary data set to inform which grid cells receive 
source-to-target values (e.g. administrative unit to pixel) (Mennis and Hultgren, 2006). Naturally, 
the quality of the population map will be tied to the quality of the underlying ancillary dataset. It 
was generally acknowledged that there are limitations for using imagery to estimate population 
in sparsely settled areas, especially in regions where buildings are made of the same materials as 
surrounding landscapes and therefore difficult to detect on satellite images. The continued 
improvements in new sensors and new techniques that leverage the value of optical and radar-
based to improve on both error rates of omission and commission will certainly push for 
continued efforts in the comparison of population modelling approaches. 
 
Arguably, the best approach could be a hybrid of the two, creating a weighting layer based on 
statistical model but masking out any area other than built areas. The best approach could also 
vary within and between countries. For instance, a different approach could be used in rural vs. 
urban areas in data-scarce countries, as urban land uses (e.g. planned/unplanned residential, 
industrial, commercial, etc.) are important ancillary information for improved mapping of 
population density variations within urban built pixels.   
 
Alternative data and approaches 
 
The top-down modeling approach described above uses remote sensing data for spatially 
disaggregating national census data. This necessitates a solid and regularly updated 
understanding of not only how many people live in a country, but where the people are, and who 
they are. Such requirements and the deficiencies of national census data mean that other data 
sources are increasingly being explored in efforts to produce estimates at different geographical 

scales and time periods.  
 
Figure 2 highlights some of 
those data currently being 
utilised in the population 
research community to 
complement census data in 
the detailed mapping of 
populations and their 
characteristics across 
timescales. Though 
increasingly prone to bias 
through measurement of 
smaller sample sizes (e.g. 
geolocated household 
survey clusters), specific 
demographic groups (e.g. 
social media) or simply 
factors related to population 
densities (e.g. satellite 
imagery), each source has 
advantages over census data 
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in terms of the frequency of measurement and spatial precision (Fig.2). Moreover, their 
utilization represents a gradual shift from ‘top-down’ approaches where census data counts are 
maintained and disaggregated to small areas, to more ‘bottom-up’ approaches, where estimates 
are made independent of census data.  
 
Uncertainties and Considerations  
 
There are an increasing variety of different gridded population products available to the end-user. 
Informed decisions should include knowledge about the underlying characteristics of the data 
used to produce the gridded map. What is the quality (e.g. how recent, granularity) of the census 
data? What is the accuracy of any ancillary data sources used in producing the population map 
and is it contemporaneous with the scale of interest?  This necessitates extensive source and 
metadata information.1 One of the greatest challenges we still face is appropriate means of 
validating final model outputs. The nature of a source (census unit) to target (pixel) top-down 
modeling approach, makes it difficult to have reliable, accurate validation data from which to 
assess model fit. Even more challenging with a model developed at regional or global scales. 
 
The incredible evolution of remote sensing techniques and population modelling methods over 
the last decades could lead to a data revolution in data-scarce countries. For example, in a 
country where recent census data are outdated, unavailable, or difficult to measure and collect, a 
combination of remote sensing data with micro-census-derived population counts allows putting 
people on the map using more sophisticated modeling approaches. Applications of such 
approaches might be finding neglected populations who have been excluded from aid 
distribution, vaccination programs, voting, etc. over the past decade or more. 
 
While challenges remain, spatial reasoning and the importance of space (and time) for linking 
environmental changes to the distribution, movement and concentration of human population is 
implicit for tying the “why” to the “where,” oftentimes requiring a multi-scalar perspective. 
Gridded population provides an important input source of information for spatially-explicit 
analyses detailing some type of pattern about a phenomenon as related to human population. 
Continued efforts to provide well-validated and well-documented spatial demographic datasets 
will be required to obtain the full benefits from these powerful methodologies. 
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